

CENTER FOR DISRUPTIVE MUSCULOSKELETAL INNOVATIONS

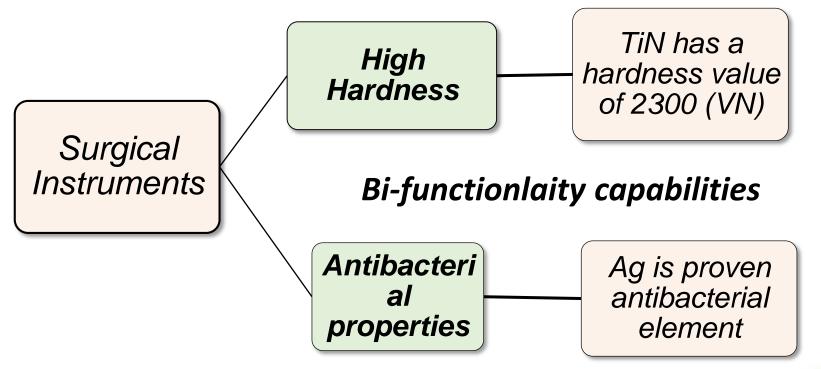
Development of Hard Antibacterial (TiN/Ag) Coatings on Orthopedic Instruments Fabricated from Ti-alloys

Dr. Sarit B. Bhaduri, Ph. D.

University of Toledo

Outline

- Introduction
- Project Aims
- Methods
- Project Progress & Next Step
- Milestones & Timeline
- Q & A



Introduction

Why TiN-Ag coatings?

Introduction

Processing Techniques

- Sputtering
- Ion-beam deposition
- Physical Vapor deposition

References:

- Moseke C, Gbureck U, Elter P, Drechsler P, Zoll A, Thull R, Ewald A. Hard implant coatings with antimicrobial properties. Journal of Materials Science: Materials in Medicine. 2011; 22:2711-20.
- 2. Arcos T, Oelhafen P, Aebi U, Hefti A, Uggelin MD, Mathys D, Guggenhe R. Preparation and characterization of TiN–Ag nanocomposite films. Vacuum. 2002;67:463-70.
- 3. Zhao J, Cai XM, Tang HQ, Liu T, Gu HQ, Cui RZ. Bactericidal and biocompatible properties of TiN/Ag multilayered films by ion beam assisted deposition. Journal of Materials Science: Materials in Medicine. 2009;20:101.
- 4. Schmitz T, Warmuth F, Werner E, Hertl C, Groll J, Gbureck U, Moseke C. Physical and chemical characterization of Ag-doped Ti coatings produced by magnetron sputtering of modular targets. Materials Science and Engineering: C. 2014;44:126-31.

Project Aims

Specific aim 1: To determine and optimize the parameters for magnetron sputtering process to produce TiN/Ag coatings on Ti6Al4V substrates, by evaluating the coating integrity by XRD, SEM, micro- and nano-hardness and comparing the data to commercially available TiN coated orthopedic instruments.

Specific aim 2: Examine the antibacterial properties by correlating Ag⁺ release kinetics with the zone of inhibition and two-color fluorescence assay with common bacteria such E. Coli.

Specific aim 3: Determine the impact of repeated autoclave cycles of the coated substrates/instruments on the antibacterial properties.

Methods-Fabrication

Magnetron Sputtering (PVD)

- Different materials can be coated on substrates simultaneously and uniformly.
- Makes the coatings compact and bond tightly onto the substrates.
- □ Different silver Ag contends coatings can be formed by the changing prcess parameters.

The Set-Up

Methods-Characterization

SEM

Topography

XRD

Phases

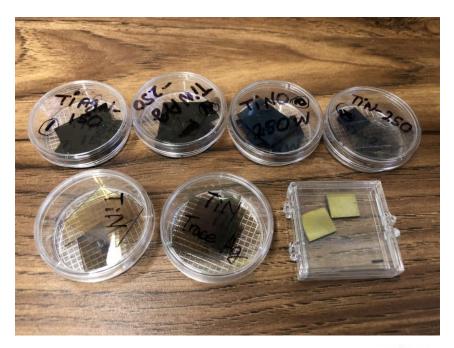
TiN/Ag coating

Antibaterial Assays

Antibacterial properties and Ag ion release properties

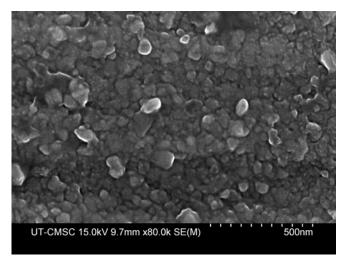
Nano-indentor AFM

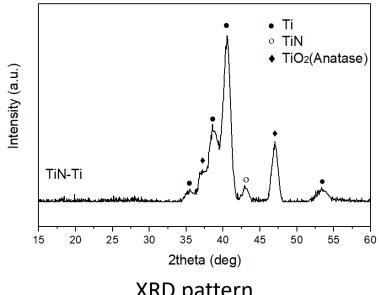
Hardness and Integrity



Samples with different parameters

Samples are prepared on both Ti and glass substrates in order to remove background effects.

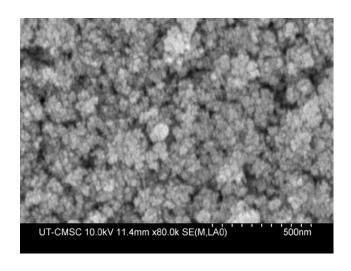


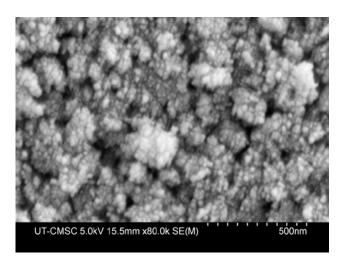


TiN coating on Ti substrate

SEM image shows compact coating grains.

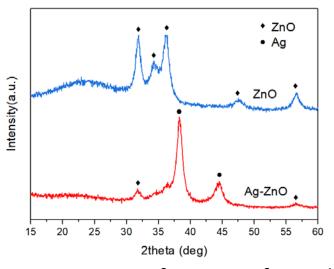
XRD pattern


Rf Power	Ar/N ₂	O2/N2	Silver added	Substrate heated
150W	1/1	0.01	No	Unheated



Coatings on glass substrates

SEM image of ZnO coating (Due to system contamination)


SEM image of ZnO-Ag coating (Due to system contamination)

Coatings on glass substrate

Zn was not added purposefully. It can be a trace of contamination from unknown source.

XRD patterns of two set of samples

	Rf Power	Ar/N ₂	Area ratio Ag/Ti	Substrate heated
ZnO	150W	1/1	0	Unheated
Ag-ZnO	250W	1/1	0.1	Unheated

Antibacterial Properties

Zone of inhibition method can show the antibacterial property and Ag⁺ release kinetics of coatings.

No antibacterial property was shown from ZOI method.

 Two-color fluorescence assay was used to characterize the contact killing property of coatings.

LIVE/DEAD BacLight Bacterial Viability Kit L7012 (Syto9/PI) was employed as dyes and the stained samples was analyzed by Cytation 5.

The results showed that Ag doped coatings process contact killing antibacterial property.

Samples	Green	Red
Ag-ZnO coating(glass)		
ZnO coating(glass)		
Pure glass		

Next Step

- Remove system contamination
- Combination of TiN and Ag
- Measure the nanohardness of synthesized coating

Milestones & Timeline

Q & A

MUSCULOSKELETAL INNOVATIONS

Thank You